A class of approximate Greek weights Imperial-ETH Workshop on Mathematical Finance, Imperial College London

Ivo Mihaylov

5 March 2015

Content

(1) Overview
(2) Weights H
(3) Weak Taylor schemes
(4) Δ
(5) Heston Δ

6 「

Asset price dynamics

- Process $X=\left(X_{t}\right)_{t \geq 0}$ take values in \mathbb{R}, with dynamics described by the SDE

$$
\begin{equation*}
\mathrm{d} X_{t}=\mu\left(X_{t}\right) \mathrm{d} t+\sigma\left(X_{t}\right) \mathrm{d} W_{t}, \quad X_{0}=x \in \mathbb{R} \tag{1}
\end{equation*}
$$

where $W=\left(W_{t}\right)_{t \geq 0}$ is a Brownian motion in \mathbb{R}.

Asset price dynamics

- Process $X=\left(X_{t}\right)_{t \geq 0}$ take values in \mathbb{R}, with dynamics described by the SDE

$$
\begin{equation*}
\mathrm{d} X_{t}=\mu\left(X_{t}\right) \mathrm{d} t+\sigma\left(X_{t}\right) \mathrm{d} W_{t}, \quad X_{0}=x \in \mathbb{R} \tag{1}
\end{equation*}
$$

where $W=\left(W_{t}\right)_{t \geq 0}$ is a Brownian motion in \mathbb{R}.

- Fix number of time steps $n \in \mathbb{N}^{+}$and a time horizon $T>0$.

Asset price dynamics

- Process $X=\left(X_{t}\right)_{t \geq 0}$ take values in \mathbb{R}, with dynamics described by the SDE

$$
\begin{equation*}
\mathrm{d} X_{t}=\mu\left(X_{t}\right) \mathrm{d} t+\sigma\left(X_{t}\right) \mathrm{d} W_{t}, \quad X_{0}=x \in \mathbb{R} \tag{1}
\end{equation*}
$$

where $W=\left(W_{t}\right)_{t \geq 0}$ is a Brownian motion in \mathbb{R}.

- Fix number of time steps $n \in \mathbb{N}^{+}$and a time horizon $T>0$.
- Define a partition on the interval $[0, T]$ by

$$
\pi:=\left\{0=t_{0}<t_{1}<\ldots<t_{n}=T\right\} .
$$

Option Price and Greeks

- Let g be a function of process X at terminal time T.

Option Price and Greeks

- Let g be a function of process X at terminal time T.
- Option price: $V(x)$, given the initial condition $X_{0}=x$:

$$
V(x):=\mathbb{E}\left[g\left(X_{t_{n}}\right) \mid X_{0}=x\right] .
$$

Option Price and Greeks

- Let g be a function of process X at terminal time T.
- Option price: $V(x)$, given the initial condition $X_{0}=x$:

$$
V(x):=\mathbb{E}\left[g\left(X_{t_{n}}\right) \mid X_{0}=x\right] .
$$

- Greeks: sensitivities of option price.

Option Price and Greeks

- Let g be a function of process X at terminal time T.
- Option price: $V(x)$, given the initial condition $X_{0}=x$:

$$
V(x):=\mathbb{E}\left[g\left(X_{t_{n}}\right) \mid X_{0}=x\right] .
$$

- Greeks: sensitivities of option price.
- Δ : sensitivity w.r.t. to x using a central-difference

$$
\Delta_{C, h}:=\frac{V(x+h)-V(x-h)}{2 h}
$$

Setting

- Recall SDE (1). Value function $u:[0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ is such that

$$
\begin{align*}
L^{(0)} u\left(t, X_{t}\right) & =0 \quad \text { for } t \in[0, T) \tag{2}\\
u(T, \cdot) & =g(\cdot)
\end{align*}
$$

where the operators are defined as

$$
\begin{aligned}
& L^{(0)}:=\partial_{t}+\mu(x) \partial_{x}+\frac{1}{2} \sigma(x)^{2} \partial_{x}^{2} \\
& L^{(1)}:=\sigma(x) \partial_{x}
\end{aligned}
$$

Setting

- Recall SDE (1). Value function $u:[0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ is such that

$$
\begin{align*}
L^{(0)} u\left(t, X_{t}\right) & =0 \quad \text { for } t \in[0, T) \tag{2}\\
u(T, \cdot) & =g(\cdot)
\end{align*}
$$

where the operators are defined as

$$
\begin{aligned}
& L^{(0)}:=\partial_{t}+\mu(x) \partial_{x}+\frac{1}{2} \sigma(x)^{2} \partial_{x}^{2} \\
& L^{(1)}:=\sigma(x) \partial_{x} .
\end{aligned}
$$

- Assumption on the smoothness of the value function u imposed.

Aim

Work with approximations $\hat{X}=\left(\hat{X}_{t}\right)_{t \in[0, T]}$ using grid π, where $h:=|\pi|:=T / n$.

Aim

Work with approximations $\hat{X}=\left(\hat{X}_{t}\right)_{t \in[0, T]}$ using grid π, where $h:=|\pi|:=T / n$.
(1) Find weights H such that for a general diffusion X :

$$
\text { Greek }=\mathbb{E}\left[H g\left(\hat{X}_{T}\right)\right]+\mathcal{O}\left(h^{\prime}\right)
$$

where H is some \mathcal{F}_{h}-measurable weight.

Aim

Work with approximations $\hat{X}=\left(\hat{X}_{t}\right)_{t \in[0, T]}$ using grid π, where $h:=|\pi|:=T / n$.
(1) Find weights H such that for a general diffusion X :

$$
\text { Greek }=\mathbb{E}\left[H g\left(\hat{X}_{T}\right)\right]+\mathcal{O}\left(h^{\prime}\right)
$$

where H is some \mathcal{F}_{h}-measurable weight.
(2) Control MSE for convergence results of the Greek approximations.

Aim

Work with approximations $\hat{X}=\left(\hat{X}_{t}\right)_{t \in[0, T]}$ using grid π, where $h:=|\pi|:=T / n$.
(1) Find weights H such that for a general diffusion X :

$$
\text { Greek }=\mathbb{E}\left[H g\left(\hat{X}_{T}\right)\right]+\mathcal{O}\left(h^{\prime}\right),
$$

where H is some \mathcal{F}_{h}-measurable weight.
(2) Control MSE for convergence results of the Greek approximations.
(3) Higher order schemes and extrapolation techniques.

Theoretical Coefficients H^{ψ} [CC14]

- Fix $I \in \mathbb{N}$. Define $\mathcal{B}_{[0,1]}^{l}$ as the set of bounded, measurable functions $\psi:[0,1] \rightarrow \mathbb{R}$ such that

$$
\begin{aligned}
& \int_{0}^{1} \psi(s) \mathrm{d} s=1 \\
& \int_{0}^{1} \psi(s) s^{k} \mathrm{~d} s=0, \text { if } I \in \mathbb{N}^{+}, \forall 1 \leq k \leq I
\end{aligned}
$$

Theoretical Coefficients \boldsymbol{H}^{ψ} [CC14]

- Fix $I \in \mathbb{N}$. Define $\mathcal{B}_{[0,1]}^{l}$ as the set of bounded, measurable functions $\psi:[0,1] \rightarrow \mathbb{R}$ such that

$$
\begin{aligned}
& \int_{0}^{1} \psi(s) \mathrm{d} s=1 \\
& \int_{0}^{1} \psi(s) s^{k} \mathrm{~d} s=0, \text { if } I \in \mathbb{N}^{+}, \forall 1 \leq k \leq I
\end{aligned}
$$

- Define weights H^{ψ} to approximate the Δ :

Definition 1 (H_{h}^{ψ}-functionals)
Let $\psi \in \mathcal{B}_{[0,1]}^{l}$, and for $0<h \leq T$, define H_{h}^{ψ} as

$$
H_{h}^{\psi}:=\frac{1}{h} \int_{s=0}^{h} \psi\left(\frac{s}{h}\right) \mathrm{d} W_{s}
$$

Examples of $\psi \in \mathcal{B}_{[0,1]}^{l}$ and H_{h}^{ψ}

0 $I=0: \psi \equiv 1 \in \mathcal{B}_{[0,1]}^{0}$, and weight $H_{h}^{\psi}:=W_{h} / h$.

Examples of $\psi \in \mathcal{B}_{[0,1]}^{l}$ and H_{h}^{ψ}

(0) $I=0: \psi \equiv 1 \in \mathcal{B}_{[0,1]}^{0}$, and weight $H_{h}^{\psi}:=W_{h} / h$.
(1) $I=1: \mathcal{B}_{[0,1]}^{1}$
(a) Linear equation $\psi_{p, 1}(u) \equiv 4-6 u$.

$$
H_{h}^{\psi_{p, 1}}=\frac{4}{h} W_{h}-\frac{6}{h^{2}} \int_{0}^{h} s \mathrm{~d} W_{s}
$$

Examples of $\psi \in \mathcal{B}_{[0,1]}^{l}$ and H_{h}^{ψ}

0 $I=0: \psi \equiv 1 \in \mathcal{B}_{[0,1]}^{0}$, and weight $H_{h}^{\psi}:=W_{h} / h$.
(1) $I=1: \mathcal{B}_{[0,1]}^{1}$
(a) Linear equation $\psi_{p, 1}(u) \equiv 4-6 u$.

$$
H_{h}^{\phi_{p, 1}}=\frac{4}{h} W_{h}-\frac{6}{h^{2}} \int_{0}^{h} s \mathrm{~d} W_{s} .
$$

(b) Fix $c \in(0,1)$, the function $\psi_{s, 1}(u) \equiv \frac{1}{c(c-1)} \mathbb{1}_{[1-c, 1]}(u)+\frac{c-2}{c-1}$.

$$
H_{h}^{\psi_{s, 1}}=\frac{c-1}{c} \frac{W_{h}}{h}+\frac{1}{c} \frac{W_{h(1-c)}}{h(1-c)} .
$$

Examples of $\psi \in \mathcal{B}_{[0,1]}^{l}$ and H_{h}^{ψ}

0 $I=0: \psi \equiv 1 \in \mathcal{B}_{[0,1]}^{0}$, and weight $H_{h}^{\psi}:=W_{h} / h$.
(1) $I=1: \mathcal{B}_{[0,1]}^{1}$
(a) Linear equation $\psi_{p, 1}(u) \equiv 4-6 u$.

$$
H_{h}^{\psi_{\rho, 1}}=\frac{4}{h} W_{h}-\frac{6}{h^{2}} \int_{0}^{h} s d W_{s} .
$$

(b) Fix $c \in(0,1)$, the function $\psi_{s, 1}(u) \equiv \frac{1}{c(c-1)} \mathbf{1}_{[1-c, 1]}(u)+\frac{c-2}{c-1}$.

$$
H_{h}^{b_{s, 1}}=\frac{c-1}{c} \frac{W_{h}}{h}+\frac{1}{c} \frac{W_{h(1-c)}}{h(1-c)} .
$$

(2 $I=2$: the unique quadratic belonging to $\mathcal{B}_{[0,1]}^{2}$ is

$$
\psi_{p, 2}(u) \equiv 9-36 u+30 u^{2} .
$$

- The variance of the weights $H_{h}^{\psi,, l}$ grows with the order l.
- The variance of the weights $H_{h}^{\psi,, l}$ grows with the order I.
- Polynomial weights have slightly lower variance than step functions.
- The variance of the weights $H_{h}^{\psi \cdot,}$ grows with the order I.
- Polynomial weights have slightly lower variance than step functions.
- If X can be perfectly simulated, $\psi \equiv 1 \in \mathcal{B}_{[0,1]}^{0}$ (i.e. order $I=0)$ recovers the Malliavin Δ weight $H_{T}=W_{T} /(x T \sigma)$.
- The variance of the weights $H_{h}^{\psi,, l}$ grows with the order I.
- Polynomial weights have slightly lower variance than step functions.
- If X can be perfectly simulated, $\psi \equiv 1 \in \mathcal{B}_{[0,1]}^{0}$ (i.e. order $I=0)$ recovers the Malliavin Δ weight $H_{T}=W_{T} /(x T \sigma)$.
- Family of weights used in the BSDE literature to approximate the Z process (i.e. $Z_{t}=\sigma\left(X_{t}\right) \partial_{x} u\left(t, X_{t}\right)$), which contains the Δ [CC14].
- The variance of the weights $H_{h}^{\psi,, l}$ grows with the order I.
- Polynomial weights have slightly lower variance than step functions.
- If X can be perfectly simulated, $\psi \equiv 1 \in \mathcal{B}_{[0,1]}^{0}$ (i.e. order $I=0)$ recovers the Malliavin Δ weight $H_{T}=W_{T} /(x T \sigma)$.
- Family of weights used in the BSDE literature to approximate the Z process (i.e. $Z_{t}=\sigma\left(X_{t}\right) \partial_{x} u\left(t, X_{t}\right)$), which contains the Δ [CC14].

Lemma 2 ([CC14, Proposition 2.4])

For $\psi \in \mathcal{B}_{[0,1]}^{\prime}$ and value function sufficiently smooth,

$$
\mathbb{E}\left[H_{h}^{\psi} g\left(X_{T}\right)\right]=L^{(1)} u(0, x)+\mathcal{O}\left(h^{\prime+1}\right)
$$

where $L^{(1)} u(0, x)=\sigma(x) \Delta$ (i.e. expression containing the Δ).

Weak Taylor schemes

$$
\hat{X}_{t_{0}}=x . \text { For } i=1, \ldots, n-1 \text {, define }
$$

$$
h_{i+1}:=t_{i+1}-t_{i}, \quad \Delta W_{i+1}:=\int_{t_{i}}^{t_{i+1}} \mathrm{~d} W_{s}, \quad \Delta Z_{i+1}:=\int_{t_{i}}^{t_{i+1}} W_{s} \mathrm{~d} s
$$

Weak Taylor schemes

$\hat{X}_{t_{0}}=x$. For $i=1, \ldots, n-1$, define

$$
h_{i+1}:=t_{i+1}-t_{i}, \quad \Delta W_{i+1}:=\int_{t_{i}}^{t_{i+1}} \mathrm{~d} W_{s}, \quad \Delta Z_{i+1}:=\int_{t_{i}}^{t_{i+1}} W_{s} \mathrm{~d} s
$$

(1) Euler scheme (weak Taylor scheme order 1).

$$
\hat{X}_{t_{i+1}}:=\hat{X}_{t_{i}}+\mu\left(\hat{X}_{t_{i}}\right) h_{i+1}+\sigma\left(\hat{X}_{t_{i}}\right) \Delta W_{i+1}
$$

Weak Taylor schemes

$\hat{X}_{t_{0}}=x$. For $i=1, \ldots, n-1$, define

$$
h_{i+1}:=t_{i+1}-t_{i}, \quad \Delta W_{i+1}:=\int_{t_{i}}^{t_{i+1}} \mathrm{~d} W_{s}, \quad \Delta Z_{i+1}:=\int_{t_{i}}^{t_{i+1}} W_{s} \mathrm{~d} s .
$$

(1) Euler scheme (weak Taylor scheme order 1).

$$
\hat{X}_{t_{i+1}}:=\hat{X}_{t_{i}}+\mu\left(\hat{X}_{t_{i}}\right) h_{i+1}+\sigma\left(\hat{X}_{t_{i}}\right) \Delta W_{i+1} .
$$

(2) Weak Taylor scheme of order 2

$$
\begin{aligned}
\hat{X}_{t_{i+1}} & :=\text { Euler }+\frac{1}{2} \sigma\left(\hat{X}_{t_{i}}\right) \sigma^{\prime}\left(\hat{X}_{t_{i}}\right)\left(\left(\Delta W_{i+1}\right)^{2}-h_{i+1}\right) \\
& +\mu^{\prime}\left(\hat{X}_{t_{i}}\right) \sigma\left(\hat{X}_{t_{i}}\right) \Delta Z_{i+1}+\frac{1}{2}\left(\mu\left(\hat{X}_{t_{i}}\right) \mu^{\prime}\left(\hat{X}_{t_{i}}\right)+\frac{1}{2} \mu^{\prime \prime}\left(\hat{X}_{t_{i}}\right) \sigma^{2}\left(\hat{X}_{t_{i}}\right)\right) h_{i+1}^{2} \\
& +\left(\mu\left(\hat{X}_{t_{i}}\right) \sigma^{\prime}\left(\hat{X}_{t_{i}}\right)+\frac{1}{2} \sigma^{\prime \prime}\left(\hat{X}_{t_{i}}\right) \sigma^{2}\left(\hat{X}_{t_{i}}\right)\right)\left(\Delta W_{i+1} h_{i+1}-\Delta Z_{i+1}\right) .
\end{aligned}
$$

Euler scheme

- On $[0, h]$, the Euler scheme is a BM with drift $f(y)$ diffusion $\sigma(y)$ if the process X starts at y at time $t=0$, i.e.

$$
\hat{X}_{h}=y+\mu(y) h+\sigma(y) \sqrt{h} Z
$$

for some $Z \sim N(0,1)$.

- Define the operators $\hat{L}_{y}^{(j)}, j=0,1$ associated to this process:

Definition 3 (Fixed space operators)

For function $\varphi: \mathbb{R}^{+} \times \mathbb{R} \rightarrow \mathbb{R}$ and some $y \in \mathbb{R}$, define the operators $\hat{L}_{y}^{(j)}$ on φ by

$$
\begin{aligned}
& \left\{\hat{L}_{y}^{(1)} \varphi\right\}(t, x):=\sigma(y) \partial_{x} \varphi(t, x) \\
& \left\{\hat{L}_{y}^{(0)} \varphi\right\}(t, x):=\left(\partial_{t}+\mu(y) \partial_{x}+\frac{1}{2} \hat{L}_{y}^{(1)} \circ \hat{L}_{y}^{(1)}\right) \varphi(t, x)
\end{aligned}
$$

where ∂_{t} and ∂_{x} are partial derivatives w.r.t. time and space.

Remark 1

Considering the explicit Euler scheme and fixing $y=\hat{X}_{t_{i}}$, then $\hat{L}_{y}^{(0)}$ is the operator associated to the diffusion process $\left(\hat{X}_{t}\right)_{t \in\left[t_{i}, t_{i+1}\right]}$. Recall the operators defined in (2); note that

$$
L^{(0)} \varphi\left(t, X_{t}\right)=\hat{L}_{X_{t}}^{(0)} \varphi\left(t, X_{t}\right), \quad L^{(1)} \varphi\left(t, X_{t}\right)=\hat{L}_{X_{t}}^{(1)} \varphi\left(t, X_{t}\right)
$$

Choosing the appropriate weight and weak Taylor scheme and sufficient smoothness of the value function:

Lemma 4

Fix $I \in \mathbb{N}$. Suppose u is sufficiently smooth, and $L^{(0)} u .=0$, $\psi \in \mathcal{B}_{[0,1]}^{\prime}$, weak Taylor scheme order $I+1$. Then,

$$
\begin{aligned}
\mathbb{E}\left[H_{h}^{\psi} u\left(h, \hat{X}_{h}\right)\right] & =L^{(1)} u(0, x)+\mathcal{O}\left(h^{\prime+1}\right) \\
& =\sigma(x) \Delta+\mathcal{O}\left(h^{\prime+1}\right)
\end{aligned}
$$

Idea of proof

Consider one time step of SDE: $\mathrm{d} X_{t}=\sigma\left(X_{t}\right) \mathrm{d} W_{t}$, with $X_{0}=x$.
(1) Euler scheme on $[0, h]$, for some $Z \sim \mathrm{~N}(0,1)$:

$$
\hat{X}_{h}:=x+\sigma(x) \sqrt{h} Z .
$$

Idea of proof

Consider one time step of SDE: $\mathrm{d} X_{t}=\sigma\left(X_{t}\right) \mathrm{d} W_{t}$, with $X_{0}=x$.
(1) Euler scheme on $[0, h]$, for some $Z \sim N(0,1)$:

$$
\hat{X}_{h}:=x+\sigma(x) \sqrt{h} z .
$$

(2) Weight H_{h}^{ψ} with $\psi \equiv 1$ (i.e. $H_{h}^{\psi}:=Z / \sqrt{h}$.)

Idea of proof

Consider one time step of SDE: $\mathrm{d} X_{t}=\sigma\left(X_{t}\right) \mathrm{d} W_{t}$, with $X_{0}=x$.
(1) Euler scheme on $[0, h]$, for some $Z \sim N(0,1)$:

$$
\hat{X}_{h}:=x+\sigma(x) \sqrt{h} Z .
$$

(2) Weight H_{h}^{ψ} with $\psi \equiv 1$ (i.e. $H_{h}^{\psi}:=Z / \sqrt{h}$.)
(3) Taylor expand $u\left(h, \hat{X}_{h}\right)$ around $(0, x)$.

Idea of proof

Consider one time step of SDE: $\mathrm{d} X_{t}=\sigma\left(X_{t}\right) \mathrm{d} W_{t}$, with $X_{0}=x$.
(1) Euler scheme on $[0, h]$, for some $Z \sim N(0,1)$:

$$
\hat{X}_{h}:=x+\sigma(x) \sqrt{h} z .
$$

(2) Weight H_{h}^{ψ} with $\psi \equiv 1$ (i.e. $H_{h}^{\psi}:=Z / \sqrt{h}$.)
(3) Taylor expand $u\left(h, \hat{X}_{h}\right)$ around $(0, x)$.
(4) Consider $\mathbb{E}\left[H_{h}^{\psi} u\left(h, \hat{X}_{h}\right)\right]$ - collect powers of Z, recalling

$$
\mathbb{E}\left[Z^{k}\right]= \begin{cases}0 & \text { if } k \text { is odd; } \\ \prod_{j=1}^{k / 2}(2 j-1) & \text { if } k \text { is even. }\end{cases}
$$

Theorem 5 (Higher order \triangle)

Fix $I \in \mathbb{N}$. Consider a weak Taylor scheme of order $I+1$, on an equidistant mesh π, such that $|\pi|=h$, value function u is sufficiently smooth, and let $\psi \in \mathcal{B}_{[0,1]}^{\prime}$. Then,

$$
\mathbb{E}\left[H_{h}^{\psi} g\left(\hat{X}_{T}\right)\right]=L^{(1)} u(0, x)+\mathcal{O}\left(h^{\prime+1}\right)
$$

Theorem 5 (Higher order Δ)

Fix $I \in \mathbb{N}$. Consider a weak Taylor scheme of order $I+1$, on an equidistant mesh π, such that $|\pi|=h$, value function u is sufficiently smooth, and let $\psi \in \mathcal{B}_{[0,1]}^{\prime}$. Then,

$$
\mathbb{E}\left[H_{h}^{\psi} g\left(\hat{X}_{T}\right)\right]=L^{(1)} u(0, x)+\mathcal{O}\left(h^{\prime+1}\right)
$$

- To prove result, express $\mathbb{E}\left[H_{h}^{\psi} u\left(t_{n}, \hat{X}_{t_{n}}\right)\right]$ as

$$
\mathbb{E}\left[H_{h}^{\psi} u\left(h, \hat{X}_{h}\right)\right]+\mathbb{E}\left[H_{h}^{\psi} \sum_{i=1}^{n-1}\left\{u\left(t_{i+1}, \hat{X}_{t_{i+1}}\right)-u\left(t_{i}, \hat{X}_{t_{i}}\right)\right\}\right] .
$$

- Deal with first term from previous lemma, and bound telescoping terms from the smoothness of the value function.

Flavour of techniques

- Iterated Itô integrals, and weak Taylor schemes [KP92].
- Expansions introduced by [TT90].
- Choose weights for state-space Greeks.
- Refine H_{h}^{ψ} for higher order schemes.

Higher order schemes

- Consider N simulations, and fix the step size to $h:=1 / N^{\zeta}$.
- Approximate Δ, with $\mathbb{E}\left[H_{h}^{\psi} g\left(\hat{X}_{T}\right)\right]$.

Higher order schemes

- Consider N simulations, and fix the step size to $h:=1 / N^{\zeta}$.
- Approximate Δ, with $\mathbb{E}\left[H_{h}^{\psi} g\left(\hat{X}_{T}\right)\right]$.

r (Scheme)	Weight	ζ	MSE	Complexity	Slope
1 (Euler)	$\psi \equiv 1 \in \mathcal{B}_{[0,1]}^{0}$	$1 / 3$	$\mathcal{O}\left(N^{-2 / 3}\right)$	$\mathcal{O}\left(N^{4 / 3}\right)$	$-1 / 2$
2 (WT2)	$\psi \in \mathcal{B}_{[0,1]}^{1}$	$1 / 5$	$\mathcal{O}\left(N^{-4 / 5}\right)$	$\mathcal{O}\left(N^{6 / 5}\right)$	$-2 / 3$
3 (WT3)	$\psi \in \mathcal{B}_{[0,1]}^{2}$	$1 / 7$	$\mathcal{O}\left(N^{-6 / 7}\right)$	$\mathcal{O}\left(N^{8 / 7}\right)$	$-3 / 4$

Table 1: Implementation for higher order Δ.

- $\mu(x) \equiv 0, \sigma(x) \equiv 1+\sin ^{2}(x), g(x) \equiv \arctan (x)$.
- $\left(X_{0}, T\right)=(0.3,1),\left(\zeta_{1}, \zeta_{2}, \zeta_{3}\right)=(1 / 3,1 / 5,1 / 7)$.

Figure 1: Higher order Δ and ψ.

- ≈ 20 seconds for WT3 vs ≈ 60 seconds for WT1!

Extrapolating Δ

- Approximation \hat{X}^{h} is with a grid $|\pi|=h$.

Extrapolating Δ

- Approximation \hat{X}^{h} is with a grid $|\pi|=h$.
- Show that $\mathbb{E}\left[H_{h}^{\psi} g\left(\hat{X}_{T}^{h}\right)\right]=L^{(1)} u(0, x)+c_{1} h+\mathcal{O}\left(h^{2}\right)$.

Extrapolating Δ

- Approximation \hat{X}^{h} is with a grid $|\pi|=h$.
- Show that $\mathbb{E}\left[H_{h}^{\psi} g\left(\hat{X}_{T}^{h}\right)\right]=L^{(1)} u(0, x)+c_{1} h+\mathcal{O}\left(h^{2}\right)$.
- Approximation $\hat{X}^{2 h}$ is with a grid $|\pi|=2 h$.

Extrapolating Δ

- Approximation \hat{X}^{h} is with a grid $|\pi|=h$.
- Show that $\mathbb{E}\left[H_{h}^{\psi} g\left(\hat{X}_{T}^{h}\right)\right]=L^{(1)} u(0, x)+c_{1} h+\mathcal{O}\left(h^{2}\right)$.
- Approximation $\hat{X}^{2 h}$ is with a grid $|\pi|=2 h$.

Theorem 6 (Romberg extrapolation)
$2 \mathbb{E}\left[H_{h}^{\psi} g\left(\hat{X}_{T}^{h}\right)\right]-\mathbb{E}\left[H_{2 h}^{\psi} g\left(\hat{X}_{T}^{2 h}\right)\right]=L^{(1)} u(0, x)+O\left(h^{2}\right)$.

Figure 2: Extrapolated Δ, the value with stepsize $h, 2 h$ and the true Δ. Euler scheme, $\zeta=1 / 5$.

Δ extrapolated

Similar expansion for higher order Romberg extrapolation using better $\psi \in \mathcal{B}_{[0,1]}^{l}$ and weak Taylor expansions.

r (Scheme)	Weight	ζ	MSE	Complexity	Slope
1 (Euler)	$\psi \equiv 1$	$1 / 5$	$\mathcal{O}\left(N^{-4 / 5}\right)$	$\mathcal{O}\left(N^{6 / 5}\right)$	$-2 / 3$
2 (WT2)	$\psi_{s, 1}$	$1 / 7$	$\mathcal{O}\left(N^{-6 / 7}\right)$	$\mathcal{O}\left(N^{8 / 7}\right)$	$-3 / 4$
3 (WT3)	$\psi_{s, 2}$	$1 / 9$	$\mathcal{O}\left(N^{-8 / 9}\right)$	$\mathcal{O}\left(N^{10 / 9}\right)$	$-4 / 5$

Table 2: Implementation for the extrapolated Δ.

Extrapolated Δ using WT1 and WT2

Figure 3: MSE for extrapolated Δ vs Complexity.

Heston Delta

- The Heston model can be represented with i.i.d. Brownian motions $W^{(1)}=\left(W_{t}^{(1)}\right)_{t \geq 0}$ and $W^{(2)}=\left(W_{t}^{(2)}\right)_{t \geq 0}$ as

$$
\mathrm{d}\binom{S_{t}}{X_{t}}=\binom{r S_{t}}{\kappa\left(\theta-X_{t}\right)} \mathrm{d} t+\left(\begin{array}{cc}
\sqrt{X_{t}} S_{t} & 0 \\
0 & \xi \sqrt{X_{t}}
\end{array}\right)\binom{\mathrm{d} W_{t}^{(1)}}{\mathrm{d} W_{t}^{(2)}}
$$

where $\left(S_{0}, X_{0}\right)=(x, v)$.

- For an Euler scheme:

$$
\Delta=\mathbb{E}\left[g\left(X_{T}\right) \frac{\left(H_{h}^{\psi}\right)_{(1)}}{x \sqrt{v}}\right]+\mathcal{O}(h)
$$

where $\left(H_{h}^{\psi}\right)_{1}$ is defined with $\psi \in \mathcal{B}_{[0,1]}^{0}$ and $W^{(1)}$.

Explicit and drift-implicit schemes

- $(\kappa, \theta, \xi, r, x, v)=(1.15,0.04,0.2,0,100,0.04)$.
- Mean reversion $\omega:=2 \kappa \theta / \xi^{2}=2.3$.
- Call option with strike $K=100$, and $T=1$.

Figure 4: MSE for Heston $\Delta, \zeta=1 / 3$.

「 of an option

- Second order sensitivity with respect to initial underlying price, x;

$$
\Gamma:=\partial_{\chi x} \mathbb{E}\left[g\left(X_{T}\right)\right]
$$

「 of an option

- Second order sensitivity with respect to initial underlying price, x;

$$
\Gamma:=\partial_{\chi x} \mathbb{E}\left[g\left(X_{T}\right)\right]
$$

- Find family of functions with desirable properties.

「 of an option

- Second order sensitivity with respect to initial underlying price, x;

$$
\Gamma:=\partial_{x x} \mathbb{E}\left[g\left(X_{T}\right)\right]
$$

- Find family of functions with desirable properties.
- Previous ideas for higher order approximations and extrapolation.

A class of approximate「 weights

Definition 7 (ϕ-functions)

Fix $I \in \mathbb{N}^{+}$. Define $\mathcal{G}_{[0,1]}^{\prime}$ as the set of bounded, measurable functions $\phi:[0,1] \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\int_{0}^{1} \phi(s) s \mathrm{~d} s=1 \tag{3}
\end{equation*}
$$

and if $I \geq 2$, then for all $k \in \mathbb{N}^{+}$such that $2 \leq k \leq I$,

$$
\begin{equation*}
\int_{0}^{1} \phi(s) s^{k} d s=0 \tag{4}
\end{equation*}
$$

A class of approximate「 weights

Definition 7 (ϕ-functions)

Fix $I \in \mathbb{N}^{+}$. Define $\mathcal{G}_{[0,1]}^{\prime}$ as the set of bounded, measurable functions $\phi:[0,1] \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\int_{0}^{1} \phi(s) s \mathrm{~d} s=1 \tag{3}
\end{equation*}
$$

and if $I \geq 2$, then for all $k \in \mathbb{N}^{+}$such that $2 \leq k \leq I$,

$$
\begin{equation*}
\int_{0}^{1} \phi(s) s^{k} d s=0 \tag{4}
\end{equation*}
$$

- Higher order weights are of the form

$$
\Gamma_{h}^{\phi}:=\frac{1}{h^{2}} \int_{s=0}^{h} \phi\left(\frac{s}{h}\right) W_{s} \mathrm{~d} W_{s},
$$

Summary for Γ

- Taylor expanding sufficiently, and using the smoothness of the value function eventually yields:

$$
\begin{align*}
\mathbb{E}\left[\Gamma_{h}^{\phi} u\left(h, \hat{X}_{h}\right)\right] & =\sigma^{2} \partial_{x x} u(0, x)+\sigma \sigma^{\prime} \partial_{x} u(0, x)+\mathcal{O}(h) \\
& =\sigma^{2}(x) \Gamma+\sigma(x) \sigma^{\prime}(x) \Delta+\mathcal{O}(h) . \tag{5}
\end{align*}
$$

Summary for Γ

- Taylor expanding sufficiently, and using the smoothness of the value function eventually yields:

$$
\begin{align*}
\mathbb{E}\left[\Gamma_{h}^{\phi} u\left(h, \hat{X}_{h}\right)\right] & =\sigma^{2} \partial_{x x} u(0, x)+\sigma \sigma^{\prime} \partial_{x} u(0, x)+\mathcal{O}(h) \\
& =\sigma^{2}(x) \Gamma+\sigma(x) \sigma^{\prime}(x) \Delta+\mathcal{O}(h) \tag{5}
\end{align*}
$$

- Deal with telescoping terms.

Summary for Γ

- Taylor expanding sufficiently, and using the smoothness of the value function eventually yields:

$$
\begin{align*}
\mathbb{E}\left[\Gamma_{h}^{\phi} u\left(h, \hat{X}_{h}\right)\right] & =\sigma^{2} \partial_{x x} u(0, x)+\sigma \sigma^{\prime} \partial_{x} u(0, x)+\mathcal{O}(h) \\
& =\sigma^{2}(x) \Gamma+\sigma(x) \sigma^{\prime}(x) \Delta+\mathcal{O}(h) \tag{5}
\end{align*}
$$

- Deal with telescoping terms.
- Equation (5), includes the $\Gamma:=\partial_{x x} u(0, x)$ of interest.
Γ using a weak Taylor scheme order 2 :

Theorem 8 (Г)

Value function u is sufficiently smooth, $\phi \in \mathcal{G}_{[0,1]}^{1}$, and WT2 scheme, equidistant time grid $|\pi|=h$. Then,

$$
\mathbb{E}\left[\Gamma_{h}^{\phi} g\left(\hat{X}_{T}\right)\right]=\sigma(x)^{2} \Gamma+\sigma^{\prime}(x) \sigma(x) \Delta+\mathcal{O}(h)
$$

Γ using a weak Taylor scheme order 2 :

Theorem 8 (Г)

Value function u is sufficiently smooth, $\phi \in \mathcal{G}_{[0,1]}^{1}$, and WT2 scheme, equidistant time grid $|\pi|=h$. Then,

$$
\mathbb{E}\left[\Gamma_{h}^{\phi} g\left(\hat{X}_{T}\right)\right]=\sigma(x)^{2} \Gamma+\sigma^{\prime}(x) \sigma(x) \Delta+\mathcal{O}(h)
$$

- Similarly, higher order Γ approximations can be obtained.
- In Table 3, implementation for higher order schemes for Γ using different schemes, and weights.

Scheme	Weight	ζ	MSE	Complexity	Slope
WT2	$\phi \equiv 2 \in \mathcal{G}_{[0,1]}^{1}$	$1 / 4$	$\mathcal{O}\left(N^{-1 / 2}\right)$	$\mathcal{O}\left(N^{5 / 4}\right)$	$-2 / 5$
WT3	$\phi_{s, 2} \in \mathcal{G}_{[0,1]}^{2}$	$1 / 6$	$\mathcal{O}\left(N^{-2 / 3}\right)$	$\mathcal{O}\left(N^{7 / 6}\right)$	$-4 / 7$

Table 3: Implementation and MSE for the Gamma.

Weak Taylor 2 scheme, using $\phi \equiv 2$

Figure 5: MSE for the Γ. Parameters as in Table 3 (i.e. $\zeta=1 / 4$).

「 extrapolation

Extrapolation using constants A, B :

$$
A \mathbb{E}\left[\Gamma_{h}^{\phi} g\left(\hat{X}_{T}^{h}\right)\right]-B \mathbb{E}\left[\Gamma_{2 h}^{\phi} g\left(\hat{X}_{T}^{2 h}\right)\right]=\text { Value }+\mathcal{O}\left(h^{\prime+1}\right)
$$

ϕ	Value	Scheme	A	B	ζ	MSE	Slope
$\mathcal{G}_{[0,1]}^{1}$	$\hat{L}_{x}^{(1,1)} u_{0}$	Euler	2	1	$1 / 6$	$\mathcal{O}\left(N^{-2 / 3}\right)$	$-4 / 7$
$\mathcal{G}_{[0,1]}^{1}$	$L^{(1,1)} u_{0}$	WT2	2	1	$1 / 6$	$\mathcal{O}\left(N^{-2 / 3}\right)$	$-4 / 7$
$\mathcal{G}_{[0,1]}^{2}$	$L^{(1,1)} u_{0}$	WT3	$4 / 3$	$1 / 3$	$1 / 8$	$\mathcal{O}\left(N^{-3 / 4}\right)$	$-2 / 3$

Table 4: Parameters for approximating Γ using extrapolation, using different ζ and schemes.

「 extrapolation

Extrapolation using constants A, B :

$$
A \mathbb{E}\left[\Gamma_{h}^{\phi} g\left(\hat{X}_{T}^{h}\right)\right]-B \mathbb{E}\left[\Gamma_{2 h}^{\phi} g\left(\hat{X}_{T}^{2 h}\right)\right]=\text { Value }+\mathcal{O}\left(h^{\prime+1}\right)
$$

ϕ	Value	Scheme	A	B	ζ	MSE	Slope
$\mathcal{G}_{[0,1]}^{1}$	$\hat{L}_{x}^{(1,1)} u_{0}$	Euler	2	1	$1 / 6$	$\mathcal{O}\left(N^{-2 / 3}\right)$	$-4 / 7$
$\mathcal{G}_{[0,1]}^{1}$	$L^{(1,1)} u_{0}$	WT2	2	1	$1 / 6$	$\mathcal{O}\left(N^{-2 / 3}\right)$	$-4 / 7$
$\mathcal{G}_{[0,1]}^{2}$	$L^{(1,1)} u_{0}$	WT3	$4 / 3$	$1 / 3$	$1 / 8$	$\mathcal{O}\left(N^{-3 / 4}\right)$	$-2 / 3$

Table 4: Parameters for approximating Γ using extrapolation, using different ζ and schemes.

Remark 2

Extrapolating for the Γ using an Euler scheme yields $\hat{L}_{x}^{(1,1)}=\sigma^{2}(x) \Gamma$, which does not include the Δ term.

Figure 6: $\log \log$ plot of the MSE vs Complexity for the Γ using extrapolation. Euler scheme and WT2 with $\phi \equiv 2$, and $(A, B)=(2,1)$. Third plot is WT3, using $\psi_{s, 2}$ and $(A, B)=(4 / 3,1 / 3)$. See Table 4.

Thank you for listening

Bibliography I

E J.-F. Chassagneux and D. Crisan.
Runge-Kutta schemes for backward stochastic differential equations.
The Annals of Applied Probability, 24(2):679-720, 2014.
P. Kloeden and E. Platen.

Numerical solution of stochastic differential equations, volume 23.
Springer Verlag, 1992.
击 D. Talay and L. Tubaro.
Expansion of the global error for numerical schemes solving stochastic differential equations.
Stochastic analysis and applications, 8(4):483-509, 1990.

