Overview	Weights <i>H</i>	Weak Taylor schemes	<u>Δ</u>	Heston Δ	Г
0000	000	0000000	000000	00	0000000000

A class of approximate Greek weights Imperial-ETH Workshop on Mathematical Finance, Imperial College London

Ivo Mihaylov

5 March 2015

・ロン ・四 と ・ ヨ と ・ ヨ と

Overview	Weights <i>H</i>	Weak Taylor schemes	Δ	Heston Δ	Г
0000	000	0000000	000000	00	0000000000
		Conte	nt		

2 Weights *H*

3 Weak Taylor schemes

4 Δ

5 Heston Δ

Overview	Weights <i>H</i>	Weak Taylor schemes	\triangle	Heston Δ	Г
0000	000	0000000	000000	00	0000000000

Asset price dynamics

Process X = (X_t)_{t≥0} take values in ℝ, with dynamics described by the SDE

$$dX_t = \mu(X_t)dt + \sigma(X_t)dW_t , \quad X_0 = x \in \mathbb{R} , \qquad (1)$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ ● ○ ●

3/34

where $W = (W_t)_{t \ge 0}$ is a Brownian motion in \mathbb{R} .

Overview	Weights <i>H</i>	Weak Taylor schemes	\triangle	Heston Δ	Г
0000	000	0000000	000000	00	0000000000

Asset price dynamics

Process X = (X_t)_{t≥0} take values in ℝ, with dynamics described by the SDE

$$\mathsf{d}X_t = \mu(X_t)\mathsf{d}t + \sigma(X_t)\mathsf{d}W_t \;, \quad X_0 = x \in \mathbb{R} \;, \qquad (1)$$

イロン イロン イヨン イヨン 三日

3/34

where $W = (W_t)_{t \ge 0}$ is a Brownian motion in \mathbb{R} .

• Fix number of time steps $n \in \mathbb{N}^+$ and a time horizon T > 0.

Overview	Weights <i>H</i>	Weak Taylor schemes	\triangle	Heston Δ	Г
0000	000	0000000	000000	00	0000000000

Asset price dynamics

Process X = (X_t)_{t≥0} take values in ℝ, with dynamics described by the SDE

$$\mathsf{d}X_t = \mu(X_t)\mathsf{d}t + \sigma(X_t)\mathsf{d}W_t \;, \quad X_0 = x \in \mathbb{R} \;, \qquad (1)$$

where $W = (W_t)_{t \ge 0}$ is a Brownian motion in \mathbb{R} .

- Fix number of time steps $n \in \mathbb{N}^+$ and a time horizon T > 0 .
- Define a partition on the interval [0, T] by

$$\pi := \{ 0 = t_0 < t_1 < \ldots < t_n = T \}.$$

Overview	Weights <i>H</i>	Weak Taylor schemes	Δ	Heston Δ	Г
0000	000	0000000	000000	00	0000000000

• Let g be a function of process X at terminal time T.

- Let g be a function of process X at terminal time T.
- **Option price:** V(x), given the initial condition $X_0 = x$:

$$V(x) := \mathbb{E}\left[g(X_{t_n})|X_0=x\right].$$

- Let g be a function of process X at terminal time T.
- **Option price:** V(x), given the initial condition $X_0 = x$:

$$V(x) := \mathbb{E}\left[g(X_{t_n})|X_0=x\right].$$

• Greeks: sensitivities of option price.

- Let g be a function of process X at terminal time T.
- **Option price:** V(x), given the initial condition $X_0 = x$:

$$V(x) := \mathbb{E}\left[g(X_{t_n})|X_0=x\right].$$

- Greeks: sensitivities of option price.
- Δ : sensitivity w.r.t. to x using a central-difference

$$\Delta_{C,h} := \frac{V(x+h) - V(x-h)}{2h}$$

イロト 不得下 イヨト イヨト 二日

Setting

Recall SDE (1). Value function u : [0, T] × ℝ → ℝ is such that

$$\begin{array}{ll} L^{(0)}u(t,X_t) &= 0 & \text{for } t \in [0,T), \\ u(T,\cdot) &= g(\cdot), \end{array}$$
 (2)

5/34

where the operators are defined as

$$L^{(0)} := \partial_t + \mu(x)\partial_x + \frac{1}{2}\sigma(x)^2\partial_x^2$$
$$L^{(1)} := \sigma(x)\partial_x.$$

Setting

Recall SDE (1). Value function u : [0, T] × ℝ → ℝ is such that

$$\begin{array}{ll} L^{(0)}u(t,X_t) &= 0 & \text{for } t \in [0,T), \\ u(T,\cdot) &= g(\cdot), \end{array}$$
 (2)

where the operators are defined as

$$L^{(0)} := \partial_t + \mu(x)\partial_x + \frac{1}{2}\sigma(x)^2\partial_x^2$$
$$L^{(1)} := \sigma(x)\partial_x.$$

• Assumption on the smoothness of the value function *u* imposed.

1 Find weights H such that for a general diffusion X:

$$\mathsf{Greek} = \mathbb{E}[\mathsf{Hg}(\hat{X}_{\mathsf{T}})] + \mathcal{O}(h'),$$

where *H* is some \mathcal{F}_h -measurable weight.

1 Find weights H such that for a general diffusion X:

$$\mathsf{Greek} = \mathbb{E}[\mathsf{Hg}(\hat{X}_{\mathcal{T}})] + \mathcal{O}(h'),$$

where *H* is some \mathcal{F}_h -measurable weight.

2 Control MSE for convergence results of the Greek approximations.

1 Find weights H such that for a general diffusion X:

$$\mathsf{Greek} = \mathbb{E}[\mathsf{Hg}(\hat{X}_{\mathcal{T}})] + \mathcal{O}(h'),$$

where *H* is some \mathcal{F}_h -measurable weight.

- 2 Control MSE for convergence results of the Greek approximations.
- **3** Higher order schemes and extrapolation techniques.

Weights *H* •00 Veak Taylor schemes

Δ 000000 Heston Δ 00 Г 0000000000

Theoretical Coefficients H^{ψ} [CC14]

• Fix $l \in \mathbb{N}$. Define $\mathcal{B}'_{[0,1]}$ as the set of bounded, measurable functions $\psi : [0,1] \to \mathbb{R}$ such that

$$\begin{split} &\int_0^1 \psi(s) \mathrm{d}s = 1, \\ &\int_0^1 \psi(s) s^k \mathrm{d}s = 0, \text{if } I \in \mathbb{N}^+, \, \forall 1 \leq k \leq I. \end{split}$$

Weights *H* •00 Veak Taylor schemes

Δ 000000 Heston Δ 00 F 0000000000

Theoretical Coefficients H^{ψ} [CC14]

• Fix $l \in \mathbb{N}$. Define $\mathcal{B}'_{[0,1]}$ as the set of bounded, measurable functions $\psi : [0,1] \to \mathbb{R}$ such that

$$\int_0^1 \psi(s) \mathrm{d}s = 1,$$

 $\int_0^1 \psi(s) s^k \mathrm{d}s = 0, ext{if } l \in \mathbb{N}^+, \ orall 1 \le k \le l.$

• Define weights H^{ψ} to approximate the Δ :

Definition 1 (H_h^{ψ} -functionals)

Let
$$\psi \in \mathcal{B}'_{[0,1]}$$
, and for $0 < h \leq {\mathcal{T}}$, define \mathcal{H}^ψ_h as

$$H_h^{\psi} := \frac{1}{h} \int_{s=0}^h \psi\left(\frac{s}{h}\right) \mathrm{d} W_s.$$

クへぐ 7/34 Weights H000 Veak Taylor schemes

Δ 000000 Heston Δ 00 F 0000000000

Examples of $\psi \in \mathcal{B}'_{[0,1]}$ and \mathcal{H}^{ψ}_h

0
$$I = 0$$
: $\psi \equiv 1 \in \mathcal{B}^0_{[0,1]}$, and weight $H_h^{\psi} := W_h/h$.

<ロ> < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (),

Weights *H*

Weak Taylor schemes 0000000 Δ 000000 Heston Δ 00

・ロト ・回ト ・ヨト ・ヨト

3

8/34

F 0000000000

Examples of $\psi \in \mathcal{B}'_{[0,1]}$ and \mathcal{H}^{ψ}_h

()
$$I = 0: \ \psi \equiv 1 \in \mathcal{B}^{0}_{[0,1]}$$
, and weight $H_{h}^{\psi} := W_{h}/h$.
() $I = 1: \ \mathcal{B}^{1}_{[0,1]}$
(a) Linear equation $\psi_{p,1}(u) \equiv 4 - 6u$.

$$H_h^{\psi_{p,1}} = \frac{4}{h}W_h - \frac{6}{h^2}\int_0^h \operatorname{sd} W_s.$$

Weights *H*

Weak Taylor scheme 0000000 Δ 000000 Heston Δ 00 F 0000000000

Examples of
$$\psi\in \mathcal{B}'_{[0,1]}$$
 and H^ψ_h

()
$$l = 0: \ \psi \equiv 1 \in \mathcal{B}^{0}_{[0,1]}$$
, and weight $H_{h}^{\psi} := W_{h}/h$.
() $l = 1: \ \mathcal{B}^{1}_{[0,1]}$
(a) Linear equation $\psi_{p,1}(u) \equiv 4 - 6u$.

$$\mathcal{H}_h^{\psi_{p,1}}=rac{4}{h}\mathcal{W}_h-rac{6}{h^2}\int_0^h \mathsf{sd}\,\mathcal{W}_{\!\!s}.$$

(b) Fix $c \in (0,1)$, the function $\psi_{s,1}(u) \equiv \frac{1}{c(c-1)} \mathbb{1}_{[1-c,1]}(u) + \frac{c-2}{c-1}$.

$$H_h^{\psi_{s,1}} = rac{c-1}{c} rac{W_h}{h} + rac{1}{c} rac{W_{h(1-c)}}{h(1-c)}.$$

view

Weights *H* ○●○ Veak Taylor schemes

Δ 000000 Heston Δ 00 F 0000000000

Examples of
$$\psi\in \mathcal{B}'_{[0,1]}$$
 and H^ψ_h

()
$$I = 0: \ \psi \equiv 1 \in \mathcal{B}^{0}_{[0,1]}, \text{ and weight } H^{\psi}_{h} := W_{h}/h.$$

() $I = 1: \ \mathcal{B}^{1}_{[0,1]}$
(a) Linear equation $\psi_{p,1}(u) \equiv 4 - 6u.$

$$H_h^{\psi_{p,1}}=rac{4}{h}W_h-rac{6}{h^2}\int_0^h \operatorname{sd} W_s.$$

(b) Fix $c \in (0,1)$, the function $\psi_{s,1}(u) \equiv \frac{1}{c(c-1)} \mathbf{1}_{[1-c,1]}(u) + \frac{c-2}{c-1}$.

$$H_h^{\psi_{s,1}} = \frac{c-1}{c} \frac{W_h}{h} + \frac{1}{c} \frac{W_{h(1-c)}}{h(1-c)}.$$

2 I = 2: the unique quadratic belonging to $\mathcal{B}^2_{[0,1]}$ is $\psi_{p,2}(u) \equiv 9 - 36u + 30u^2$.

• The variance of the weights $H_h^{\psi_{\cdot,l}}$ grows with the order *l*.

Weights *H*

Weak Taylor schemes

Δ 000000 Heston Δ 00 F 0000000000

- The variance of the weights $H_h^{\psi_{\cdot,l}}$ grows with the order *l*.
- Polynomial weights have slightly lower variance than step functions.

Weights *H*

Weak Taylor schemes

Δ 000000 Heston Δ 00 F 0000000000

- The variance of the weights $H_h^{\psi_{\cdot,l}}$ grows with the order *l*.
- Polynomial weights have slightly lower variance than step functions.
- If X can be perfectly simulated, $\psi \equiv 1 \in \mathcal{B}^{0}_{[0,1]}$ (i.e. order l = 0) recovers the Malliavin Δ weight $H_{T} = W_{T}/(xT\sigma)$.

Weights *H*

Weak Taylor schemes

Δ 000000 Heston Δ 00

(ロ) (四) (E) (E) (E)

F 0000000000

- The variance of the weights $H_h^{\psi_{\cdot,l}}$ grows with the order *l*.
- Polynomial weights have slightly lower variance than step functions.
- If X can be perfectly simulated, $\psi \equiv 1 \in \mathcal{B}^{0}_{[0,1]}$ (i.e. order l = 0) recovers the Malliavin Δ weight $H_{\mathcal{T}} = W_{\mathcal{T}}/(xT\sigma)$.
- Family of weights used in the BSDE literature to approximate the Z process (i.e. Z_t = σ(X_t)∂_xu(t, X_t)), which contains the Δ [CC14].

Weights *H*

Weak Taylor schemes 0000000 Δ 000000 Heston Δ 00

ヘロト ヘアト ヘビト ヘビト

F 0000000000

- The variance of the weights $H_h^{\psi_{\cdot,l}}$ grows with the order *l*.
- Polynomial weights have slightly lower variance than step functions.
- If X can be perfectly simulated, $\psi \equiv 1 \in \mathcal{B}^{0}_{[0,1]}$ (i.e. order l = 0) recovers the Malliavin Δ weight $H_{T} = W_{T}/(xT\sigma)$.
- Family of weights used in the BSDE literature to approximate the Z process (i.e. Z_t = σ(X_t)∂_xu(t, X_t)), which contains the Δ [CC14].

Lemma 2 ([CC14, Proposition 2.4])

For $\psi \in \mathcal{B}'_{[0,1]}$ and value function sufficiently smooth,

$$\mathbb{E}\left[H_h^{\psi}g(X_T)\right] = L^{(1)}u(0,x) + \mathcal{O}(h^{l+1}),$$

where $L^{(1)}u(0,x) = \sigma(x)\Delta$ (i.e. expression containing the Δ).

Overview 0000	Weights <i>H</i> 000	Weak Taylor schemes ●000000	<u>Δ</u> 000000	Heston Δ 00	Г 0000000000
Ŷ	E · 4	Weak Taylor			
Ű		$\ldots, n-1$, define			$\int t_{i+1}$
h_{i+1}	$:= t_{i+1} - t_i,$	$\Delta W_{i+1} := \int_{t_i}^{t_i}$	$\mathrm{d}W_{s},$	$\Delta Z_{i+1} := $	$\int_{t_i} W_s \mathrm{d}s.$

◆□ → ◆□ → ◆三 → ◆三 → ○ ● ● ● ●

Overview 0000	Weights <i>H</i> 000	Weak Taylor schemes ●000000	<u>Δ</u> 000000	Heston Δ 00	Г 0000000000
ŵ		Weak Taylor		;	
-		$\ldots, n-1$, define			$\int t_{i+1}$
h_{i+1} :	$= t_{i+1}-t_i,$	$\Delta W_{i+1} := \int_{t_i}^{t_{i+1}}$	$\mathrm{d}W_{s},$	$\Delta Z_{i+1} := $	$\int_{t_i} W_s \mathrm{d}s.$

1 Euler scheme (weak Taylor scheme order 1).

$$\hat{X}_{t_{i+1}} := \hat{X}_{t_i} + \mu(\hat{X}_{t_i})h_{i+1} + \sigma(\hat{X}_{t_i})\Delta W_{i+1}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

1 Euler scheme (weak Taylor scheme order 1).

$$\hat{X}_{t_{i+1}} := \hat{X}_{t_i} + \mu(\hat{X}_{t_i})h_{i+1} + \sigma(\hat{X}_{t_i})\Delta W_{i+1}.$$

2 Weak Taylor scheme of order 2

$$\begin{split} \hat{X}_{t_{i+1}} &:= \mathsf{Euler} + \frac{1}{2}\sigma(\hat{X}_{t_i})\sigma'(\hat{X}_{t_i})\left((\Delta W_{i+1})^2 - h_{i+1}\right) \\ &+ \mu'(\hat{X}_{t_i})\sigma(\hat{X}_{t_i})\Delta Z_{i+1} + \frac{1}{2}\left(\mu(\hat{X}_{t_i})\mu'(\hat{X}_{t_i}) + \frac{1}{2}\mu''(\hat{X}_{t_i})\sigma^2(\hat{X}_{t_i})\right)h_{i+1}^2 \\ &+ \left(\mu(\hat{X}_{t_i})\sigma'(\hat{X}_{t_i}) + \frac{1}{2}\sigma''(\hat{X}_{t_i})\sigma^2(\hat{X}_{t_i})\right)\left(\Delta W_{i+1}h_{i+1} - \Delta Z_{i+1}\right). \end{split}$$

Dverview	Weights <i>H</i>	Weak Taylor schemes	Δ	Heston Δ	Г
0000	000	000000	000000	00	0000000000

Euler scheme

• On [0, h], the Euler scheme is a BM with drift f(y) diffusion $\sigma(y)$ if the process X starts at y at time t = 0, i.e.

$$\hat{X}_h = y + \mu(y)h + \sigma(y)\sqrt{h}Z,$$

for some $Z \sim N(0, 1)$.

• Define the operators $\hat{L}_{y}^{(j)}$, j = 0, 1 associated to this process:

Definition 3 (Fixed space operators)

For function $\varphi : \mathbb{R}^+ \times \mathbb{R} \to \mathbb{R}$ and some $y \in \mathbb{R}$, define the operators $\hat{L}_y^{(j)}$ on φ by

$$\begin{split} &\{\hat{L}_{y}^{(1)}\varphi\}(t,x) := \sigma(y)\partial_{x}\varphi(t,x), \\ &\{\hat{L}_{y}^{(0)}\varphi\}(t,x) := \left(\partial_{t} + \mu(y)\partial_{x} + \frac{1}{2}\hat{L}_{y}^{(1)} \circ \hat{L}_{y}^{(1)}\right)\varphi(t,x), \end{split}$$

where ∂_t and ∂_x are partial derivatives w.r.t. time and space.

	0	Weak Taylor schemes		Heston Δ	Г
0000	000	000000	000000	00	0000000000

Remark 1

Considering the explicit Euler scheme and fixing $y = \hat{X}_{t_i}$, then $\hat{L}_y^{(0)}$ is the operator associated to the diffusion process $(\hat{X}_t)_{t \in [t_i, t_{i+1}]}$. Recall the operators defined in (2); note that

$$L^{(0)}\varphi(t,X_t) = \hat{L}^{(0)}_{X_t}\varphi(t,X_t), \qquad L^{(1)}\varphi(t,X_t) = \hat{L}^{(1)}_{X_t}\varphi(t,X_t).$$

Overview	Weights H	Weak Taylor schemes	\triangle	Heston Δ	Г
0000	000	0000000	000000	00	0000000000

Choosing the appropriate weight and weak Taylor scheme and sufficient smoothness of the value function:

Lemma 4

Fix $l \in \mathbb{N}$. Suppose u is sufficiently smooth, and $L^{(0)}u = 0$, $\psi \in \mathcal{B}'_{[0,1]}$, weak Taylor scheme order l + 1. Then,

$$\mathbb{E}\left[H_{h}^{\psi}u(h,\hat{X}_{h})\right] = L^{(1)}u(0,x) + \mathcal{O}(h^{l+1})$$
$$= \sigma(x)\Delta + \mathcal{O}(h^{l+1}).$$

Overview	Weights H	Weak Taylor schemes	\triangle	Heston Δ	Г
0000	000	0000000	000000	00	0000000000

Consider one time step of SDE: $dX_t = \sigma(X_t) dW_t$, with $X_0 = x$.

1 Euler scheme on [0, h], for some $Z \sim N(0, 1)$:

$$\hat{X}_h := x + \sigma(x)\sqrt{h}Z.$$

Overview	Weights <i>H</i>	Weak Taylor schemes	Δ	Heston Δ	Г
0000	000	0000000	000000	00	0000000000

Consider one time step of SDE: $dX_t = \sigma(X_t) dW_t$, with $X_0 = x$.

1 Euler scheme on [0, h], for some $Z \sim N(0, 1)$:

$$\hat{X}_h := x + \sigma(x)\sqrt{h}Z.$$

イロト 不得 とくき とくきとう き

14/34

2 Weight H_h^{ψ} with $\psi \equiv 1$ (i.e. $H_h^{\psi} := Z/\sqrt{h}$.)

Overview	Weights H	Weak Taylor schemes	\triangle	Heston Δ	Г
0000	000	0000000	000000	00	0000000000

Consider one time step of SDE: $dX_t = \sigma(X_t)dW_t$, with $X_0 = x$.

1 Euler scheme on [0, h], for some $Z \sim N(0, 1)$:

$$\hat{X}_h := x + \sigma(x)\sqrt{h}Z.$$

- 2 Weight H_h^{ψ} with $\psi \equiv 1$ (i.e. $H_h^{\psi} := Z/\sqrt{h}$.)
- **3** Taylor expand $u(h, \hat{X}_h)$ around (0, x).

Overview	Weights <i>H</i>	Weak Taylor schemes	Δ	Heston Δ	Г
0000	000	0000000	000000	00	0000

Consider one time step of SDE: $dX_t = \sigma(X_t) dW_t$, with $X_0 = x$.

1 Euler scheme on [0, h], for some $Z \sim N(0, 1)$:

$$\hat{X}_h := x + \sigma(x)\sqrt{h}Z.$$

- 2 Weight H_h^{ψ} with $\psi \equiv 1$ (i.e. $H_h^{\psi} := Z/\sqrt{h}$.)
- **3** Taylor expand $u(h, \hat{X}_h)$ around (0, x).
- **4** Consider $\mathbb{E}[H_h^{\psi}u(h, \hat{X}_h)]$ collect powers of Z, recalling

$$\mathbb{E}[Z^k] = \begin{cases} 0 & \text{if } k \text{ is odd;} \\ \prod_{j=1}^{k/2} (2j-1) & \text{if } k \text{ is even} \end{cases}$$

Overview	Weights <i>H</i>	Weak Taylor schemes	Δ	Heston Δ	Г
0000	000	0000000	000000	00	0000000000

Theorem 5 (Higher order Δ)

Fix $l \in \mathbb{N}$. Consider a weak Taylor scheme of order l + 1, on an equidistant mesh π , such that $|\pi| = h$, value function u is sufficiently smooth, and let $\psi \in \mathcal{B}'_{[0,1]}$. Then,

$$\mathbb{E}\left[H_h^{\psi}g(\hat{X}_T)\right] = L^{(1)}u(0,x) + \mathcal{O}(h^{l+1}).$$

Theorem 5 (Higher order Δ)

Fix $l \in \mathbb{N}$. Consider a weak Taylor scheme of order l + 1, on an equidistant mesh π , such that $|\pi| = h$, value function u is sufficiently smooth, and let $\psi \in \mathcal{B}'_{[0,1]}$. Then,

$$\mathbb{E}\left[H_h^{\psi}g(\hat{X}_T)\right] = L^{(1)}u(0,x) + \mathcal{O}(h^{l+1}).$$

• To prove result, express $\mathbb{E}\left[H_{h}^{\psi}u(t_{n},\hat{X}_{t_{n}})
ight]$ as

$$\mathbb{E}\left[H_h^{\psi}u(h,\hat{X}_h)\right] + \mathbb{E}\left[H_h^{\psi}\sum_{i=1}^{n-1}\left\{u(t_{i+1},\hat{X}_{t_{i+1}}) - u(t_i,\hat{X}_{t_i})\right\}\right]$$

 Deal with first term from previous lemma, and bound telescoping terms from the smoothness of the value function.

イロト 不得下 イヨト イヨト 二日

Overview	Weights <i>H</i>	Weak Taylor schemes	<u>Δ</u>	Heston Δ	Г		
0000	000	000000●	000000	00	0000000000		
Flavour of techniques							

Iterated Itô integrals, and weak Taylor schemes [KP92].

・ロン ・四 と ・ ヨ と ・ ヨ と … ヨ

16/34

• Expansions introduced by [TT90].

Choose weights for state-space Greeks.
Refine H^{\phi}_b for higher order schemes.

Overview	Weights <i>H</i>	Weak Taylor schemes	Δ	Heston Δ	Γ
0000	000	000000	00000	00	0000000000

Higher order schemes

- Consider N simulations, and fix the step size to $h := 1/N^{\zeta}$.
- Approximate Δ , with $\mathbb{E}\left[H_{h}^{\psi}g(\hat{X}_{T})\right]$.

Overview	Weights <i>H</i>	Weak Taylor schemes	Δ	Heston Δ	Г
0000	000	000000	00000	00	0000000000

Higher order schemes

- Consider N simulations, and fix the step size to $h := 1/N^{\zeta}$.
- Approximate Δ , with $\mathbb{E}\left[H_{h}^{\psi}g(\hat{X}_{T})\right]$.

r (Scheme)	Weight	ζ	MSE	Complexity	Slope
1 (Euler)	$\psi \equiv 1 \in \mathcal{B}^0_{[0,1]}$	1/3	$\mathcal{O}(N^{-2/3})$	$\mathcal{O}(N^{4/3})$	-1/2
2 (WT2)	$\psi \in \mathcal{B}^{1}_{[0,1]}$	1/5	$\mathcal{O}(N^{-4/5})$	$\mathcal{O}(N^{6/5})$	-2/3
3 (WT3)	$\psi \in \mathcal{B}_{[0,1]}^{2}$	1/7	$\mathcal{O}(N^{-6/7})$	$\mathcal{O}(N^{8/7})$	-3/4

Table 1: Implementation for higher order Δ .

Overview	Weights <i>H</i> 000	Weak Taylor schemes	∆ ○●○○○○○	Heston Δ 00	Г 0000000000
•	$\mu(x) \equiv 0, \sigma($	$(x)\equiv 1+\sin^2(x), \ \mu$	$g(x) \equiv \operatorname{arcta}$	an(x).	

• $(X_0, T) = (0.3, 1), (\zeta_1, \zeta_2, \zeta_3) = (1/3, 1/5, 1/7).$

Figure 1: Higher order Δ and ψ .

• \approx 20 seconds for WT3 vs \approx 60 seconds for WT1!

Overview	Weights <i>H</i>	Weak Taylor schemes	∆	Heston Δ	Г		
0000	000		००●०००	00	0000000000		
Extrapolating Δ							

• Approximation \hat{X}^h is with a grid $|\pi| = h$.

- Approximation \hat{X}^h is with a grid $|\pi| = h$.
- Show that $\mathbb{E}\left[H_h^{\psi}g(\hat{X}_T^h)\right] = L^{(1)}u(0,x) + c_1h + \mathcal{O}(h^2).$

(日) (同) (三) (三)

19/34

Overview	Weights <i>H</i>	Weak Taylor schemes	∆	Heston Δ	Г			
0000	000	0000000	00●000	00	0000000000			
Extrapolating A								

Extrapolating Δ

- Approximation \hat{X}^h is with a grid $|\pi| = h$.
- Show that $\mathbb{E}\left[H_h^{\psi}g(\hat{X}_T^h)\right] = L^{(1)}u(0,x) + c_1h + \mathcal{O}(h^2).$

・ロン ・四 と ・ ヨ と ・ ヨ と … ヨ

19/34

• Approximation \hat{X}^{2h} is with a grid $|\pi| = 2h$.

Extrapolating Δ

- Approximation \hat{X}^h is with a grid $|\pi| = h$.
- Show that $\mathbb{E}\left[H_h^{\psi}g(\hat{X}_T^h)\right] = L^{(1)}u(0,x) + c_1h + \mathcal{O}(h^2).$

イロト 不得下 イヨト イヨト 二日

19/34

• Approximation \hat{X}^{2h} is with a grid $|\pi| = 2h$.

Theorem 6 (Romberg extrapolation)

$$2\mathbb{E}\left[H_h^{\psi}g(\hat{X}_T^h)\right] - \mathbb{E}\left[H_{2h}^{\psi}g(\hat{X}_T^{2h})\right] = L^{(1)}u(0,x) + O(h^2).$$

Figure 2: Extrapolated Δ , the value with stepsize *h*, 2*h* and the true Δ . Euler scheme, $\zeta = 1/5$.

Similar expansion for higher order Romberg extrapolation using better $\psi \in \mathcal{B}_{[0,1]}^{l}$ and weak Taylor expansions.

Weight MSE Slope r (Scheme) Complexity $\mathcal{O}(N^{-\overline{4/5}})$ $\mathcal{O}(N^{6/5})$ 1 (Euler) $\psi \equiv 1$ 1/5-2/3 $O(N^{-6/7})$ $O(N^{8/7})$ -3/4 2 (WT2) $\psi_{s,1}$ 1/7 $O(N^{-8/9})$ $O(N^{10/9})$ 3 (WT3) 1/9-4/5 $\psi_{s,2}$

Table 2: Implementation for the extrapolated Δ .

Ove	rview ¹	Weights <i>H</i>	Weak Taylor schemes	Δ	Heston Δ	Г
000	0	000	000000	00000	00	0000000000

Extrapolated Δ using WT1 and WT2

Figure 3: MSE for extrapolated Δ vs Complexity.

Heston Delta

• The Heston model can be represented with i.i.d. Brownian motions $W^{(1)} = (W_t^{(1)})_{t \ge 0}$ and $W^{(2)} = (W_t^{(2)})_{t \ge 0}$ as

$$d\begin{pmatrix} S_t\\ X_t \end{pmatrix} = \begin{pmatrix} rS_t\\ \kappa(\theta - X_t) \end{pmatrix} dt + \begin{pmatrix} \sqrt{X_t}S_t & 0\\ 0 & \xi\sqrt{X_t} \end{pmatrix} \begin{pmatrix} dW_t^{(1)}\\ dW_t^{(2)} \end{pmatrix}$$

where $(S_0, X_0) = (x, v)$.

• For an Euler scheme:

$$\Delta = \mathbb{E}\left[g(X_T)\frac{(H_h^{\psi})_{(1)}}{x\sqrt{v}}\right] + \mathcal{O}(h),$$

where $(H_h^{\psi})_1$ is defined with $\psi \in \mathcal{B}^0_{[0,1]}$ and $W^{(1)}_{\cdot}$.

Weights	Н
000	

Veak Taylor schemes

Δ 000000 Heston Δ

F 0000000000

Explicit and drift-implicit schemes

- $(\kappa, \theta, \xi, r, x, v) = (1.15, 0.04, 0.2, 0, 100, 0.04).$
- Mean reversion $\omega := 2\kappa\theta/\xi^2 = 2.3$.
- Call option with strike K = 100, and T = 1.

Figure 4: MSE for Heston Δ , $\zeta = 1/3$.

• Second order sensitivity with respect to initial underlying price, *x*;

$$\Gamma := \partial_{xx} \mathbb{E} \left[g(X_T) \right].$$

イロン イヨン イヨン イヨン

3

25 / 34

 Second order sensitivity with respect to initial underlying price, x;

$$\Gamma := \partial_{xx} \mathbb{E} \left[g(X_T) \right].$$

• Find family of functions with desirable properties.

 Second order sensitivity with respect to initial underlying price, x;

$$\Gamma := \partial_{xx} \mathbb{E}\left[g(X_T)\right].$$

- Find family of functions with desirable properties.
- Previous ideas for higher order approximations and extrapolation.

Overview	Weights <i>H</i>	Weak Taylor schemes	Δ	Heston Δ	Г
0000	000	0000000	000000	00	000000000

A class of approximate Γ weights

Definition 7 (ϕ -functions)

Fix $l \in \mathbb{N}^+$. Define $\mathcal{G}'_{[0,1]}$ as the set of bounded, measurable functions $\phi : [0,1] \to \mathbb{R}$ such that

$$\int_0^1 \phi(s) s \mathrm{d}s = 1, \tag{3}$$

and if $l \ge 2$, then for all $k \in \mathbb{N}^+$ such that $2 \le k \le l$,

$$\int_0^1 \phi(s) s^k \mathrm{d}s = 0. \tag{4}$$

イロン イヨン イヨン イヨン 三日

26/34

Overview	Weights <i>H</i>	Weak Taylor schemes	Δ	Heston Δ	Г
0000	000	0000000	000000	00	000000000

A class of approximate Γ weights

Definition 7 (ϕ -functions)

Fix $l \in \mathbb{N}^+$. Define $\mathcal{G}'_{[0,1]}$ as the set of bounded, measurable functions $\phi : [0,1] \to \mathbb{R}$ such that

$$\int_0^1 \phi(s) \mathsf{sd}s = 1, \tag{3}$$

and if $l \geq 2$, then for all $k \in \mathbb{N}^+$ such that $2 \leq k \leq l$,

$$\int_0^1 \phi(s) s^k \mathrm{d}s = 0. \tag{4}$$

Higher order weights are of the form

$$\Gamma_{h}^{\phi} := \frac{1}{h^{2}} \int_{s=0}^{h} \phi\left(\frac{s}{h}\right) W_{s} dW_{s},$$

• Taylor expanding sufficiently, and using the smoothness of the value function eventually yields:

$$\mathbb{E}\left[\Gamma_{h}^{\phi}u(h,\hat{X}_{h})\right] = \sigma^{2}\partial_{xx}u(0,x) + \sigma\sigma'\partial_{x}u(0,x) + \mathcal{O}(h)$$

$$= \sigma^{2}(x)\Gamma + \sigma(x)\sigma'(x)\Delta + \mathcal{O}(h).$$
(5)

• Taylor expanding sufficiently, and using the smoothness of the value function eventually yields:

$$\mathbb{E}\left[\Gamma_{h}^{\phi}u(h,\hat{X}_{h})\right] = \sigma^{2}\partial_{xx}u(0,x) + \sigma\sigma'\partial_{x}u(0,x) + \mathcal{O}(h)$$

$$= \sigma^{2}(x)\Gamma + \sigma(x)\sigma'(x)\Delta + \mathcal{O}(h).$$
(5)

イロン イヨン イヨン イヨン

3

27 / 34

• Deal with telescoping terms.

• Taylor expanding sufficiently, and using the smoothness of the value function eventually yields:

$$\mathbb{E}\left[\Gamma_{h}^{\phi}u(h,\hat{X}_{h})\right] = \sigma^{2}\partial_{xx}u(0,x) + \sigma\sigma'\partial_{x}u(0,x) + \mathcal{O}(h)$$

$$= \sigma^{2}(x)\Gamma + \sigma(x)\sigma'(x)\Delta + \mathcal{O}(h).$$
(5)

(日) (同) (三) (三)

27 / 34

- Deal with telescoping terms.
- Equation (5), includes the Γ := ∂_{xx}u(0, x) of interest.

Overview	Weights <i>H</i>	Weak Taylor schemes	Δ	Heston ∆	Г
0000	000	0000000	000000	00	000●000000

 Γ using a weak Taylor scheme order 2:

Theorem 8 (Γ)

Value function u is sufficiently smooth, $\phi \in \mathcal{G}_{[0,1]}^1$, and WT2 scheme, equidistant time grid $|\pi| = h$. Then,

$$\mathbb{E}\left[\Gamma_{h}^{\phi}g(\hat{X}_{T})\right] = \sigma(x)^{2}\Gamma + \sigma'(x)\sigma(x)\Delta + \mathcal{O}(h).$$

Overview	Weights <i>H</i>	Weak Taylor schemes	Δ	Heston ∆	F
0000	000	0000000	000000	00	000●000000

Γ using a weak Taylor scheme order 2:

Theorem 8 (Γ)

Value function u is sufficiently smooth, $\phi \in \mathcal{G}_{[0,1]}^1$, and WT2 scheme, equidistant time grid $|\pi| = h$. Then,

$$\mathbb{E}\left[\Gamma_{h}^{\phi}g(\hat{X}_{T})\right] = \sigma(x)^{2}\Gamma + \sigma'(x)\sigma(x)\Delta + \mathcal{O}(h).$$

• Similarly, higher order Γ approximations can be obtained.

Overview	Weights <i>H</i>	Weak Taylor schemes	<u>Δ</u>	Heston Δ	F
0000	000	0000000	000000	00	0000●00000

• In Table 3, implementation for higher order schemes for Γ using different schemes, and weights.

Scheme	Weight	ζ	MSE	Complexity	Slope
WT2	$\phi \equiv 2 \in \mathcal{G}^1_{[0,1]}$	1/4	$\mathcal{O}(N^{-1/2})$	$\mathcal{O}(N^{5/4})$	-2/5
WT3	$\phi_{s,2} \in \mathcal{G}^2_{[0,1]}$	1/6	$\mathcal{O}(N^{-2/3})$	$\mathcal{O}(N^{7/6})$	-4/7

Table 3: Implementation and MSE for the Gamma.

Overview	Weights <i>H</i>	Weak Taylor schemes	Δ	Heston Δ	F
0000	000	0000000	000000	00	00000●0000

Weak Taylor 2 scheme, using $\phi \equiv 2$

Figure 5: MSE for the Γ . Parameters as in Table 3 (i.e. $\zeta = 1/4$).

Weigl
000

Weak Taylor schemes

Δ 000000 Heston Z

F 000000●000

Γ extrapolation

Extrapolation using constants A, B:

$$A\mathbb{E}\left[\Gamma_{h}^{\phi}g(\hat{X}_{T}^{h})\right] - B\mathbb{E}\left[\Gamma_{2h}^{\phi}g(\hat{X}_{T}^{2h})\right] = \mathsf{Value} + \mathcal{O}(h^{l+1}).$$

ϕ	Value	Scheme	А	В	ζ	MSE	Slope
$\mathcal{G}^1_{[0,1]}$	$\hat{L}_x^{(1,1)}u_0$	Euler	2	1	1/6	$\mathcal{O}(N^{-2/3})$	-4/7
$\mathcal{G}_{[0,1]}^{[0,1]}$	$L^{(1,1)}u_0$	WT2	2	1	1/6	$\mathcal{O}(N^{-2/3})$	-4/7
$\mathcal{G}_{[0,1]}^{2}$	$L^{(1,1)}u_0$	WT3	4/3	1/3	1/8	$\mathcal{O}(N^{-3/4})$	-2/3

Table 4: Parameters for approximating Γ using extrapolation, using different ζ and schemes.

Weight	S
000	

Neak Taylor schemes

Δ 000000 Heston Δ 00 F 000000●000

Γ extrapolation

Extrapolation using constants A, B:

$$A\mathbb{E}\left[\Gamma_{h}^{\phi}g(\hat{X}_{T}^{h})\right] - B\mathbb{E}\left[\Gamma_{2h}^{\phi}g(\hat{X}_{T}^{2h})\right] = \mathsf{Value} + \mathcal{O}(h^{l+1}).$$

ϕ	Value	Scheme	А	В	ζ	MSE	Slope
$\mathcal{G}^1_{[0,1]}$	$\hat{L}_x^{(1,1)}u_0$	Euler	2	1	1/6	$\mathcal{O}(N^{-2/3})$	-4/7
$\mathcal{G}_{[0,1]}^{[0,1]}$	$L^{(1,1)}u_0$	WT2	2	1	1/6	$\mathcal{O}(N^{-2/3})$	-4/7
$\mathcal{G}_{[0,1]}^{2}$	$L^{(1,1)}u_0$	WT3	4/3	1/3	1/8	$\mathcal{O}(N^{-3/4})$	-2/3

Table 4: Parameters for approximating Γ using extrapolation, using different ζ and schemes.

Remark 2

Extrapolating for the Γ using an Euler scheme yields $\hat{L}_x^{(1,1)} = \sigma^2(x)\Gamma$, which does not include the Δ term.

Overview	Weights <i>H</i>	Weak Taylor schemes	<u>Δ</u>	Heston Δ	F
0000	000		000000	00	0000000●00

Figure 6: log log plot of the MSE vs Complexity for the Γ using extrapolation. Euler scheme and WT2 with $\phi \equiv 2$, and (A, B) = (2, 1). Third plot is WT3, using $\psi_{s,2}$ and (A, B) = (4/3, 1/3). See Table 4.

Overview	Weights <i>H</i>	Weak Taylor schemes	Δ	Heston Δ	Г
0000	000		000000	00	000000000

Thank you for listening

<ロ><回><一><一><一><一><一><一</td>33/34

Overview	Weights <i>H</i>	Weak Taylor schemes	<u>Δ</u>	Heston Δ	Г
0000	000	0000000	000000	00	000000000

Bibliography I

J.-F. Chassagneux and D. Crisan.

Runge–Kutta schemes for backward stochastic differential equations.

The Annals of Applied Probability, 24(2):679–720, 2014.

P. Kloeden and E. Platen.

Numerical solution of stochastic differential equations, volume 23. Springer Verlag, 1992.

D. Talay and L. Tubaro.

Expansion of the global error for numerical schemes solving stochastic differential equations.

Stochastic analysis and applications, 8(4):483–509, 1990.